KETERAMPILAN PETANI DALAM PENGENDALIAN HAMA TERPADU DI DESA GUNUNG BATU, KABUPATEN OKU TIMUR

Ali Alamsyah Kusumadinata, Astrid Sri Wahyuni Sumah

Abstract


While the importance of biological control for crop production is widely recognized, research on how farmers view predatory insects in eradicating pests on agricultural land is still rare. Although there is much ecological research on predatory beetles as part of biological control, little social research has been conducted on the critical level of understanding of biological control and the organisms involved. This research examines farmers' understanding of using predatory beetles as a biological control concept on agricultural land in Gunung Batu Village, East OKU Regency. Therefore, this research aims to see how farmers' skills are in managing integrated pest control using predatory Coleoptera beetles in managing rice cultivation. The research results show that farmers still use predatory beetles as part of controlling pest populations on agricultural land. Farmers consider predatory beetles to prevent pest outbreaks that can harm quality rice production. So, farmers can build a network of farmers so they can learn from each other and share local knowledge. Apart from that, the results obtained from integrated pest control, farmers can experience positive results and can positively influence farmers' perceptions of natural enemies of agricultural pests.

 Keywords: Agricultural pests, Coleoptera beetles, biological control, predators


Full Text:

PDF

References


Aguilera, G., Roslin, T., Miller, K., Tamburini, G., Birkhofer, K., Caballero-Lopez, B., Lindstrom, S.A.-M., Öckinger, E., Rundolf, M., Rusch, A., Smith, H. G., & Bommarco, R. 2020. Crop diversity benefits carabid and pollinator communities in landscapes with semi-natural habitats. Journal of Applied Ecology, 57 (11), 2170-2179. http://dx.doi. org/10.1111/1365-2664.13712.

Abdulaziz, K., Kundu, K. K., & Malik, D. P. 2021. Growth and economic profitability of rice cultivation in Haryana. Asian Journal of Agricultural Extension, Economics & Sociology, 39 (11), 182-190. DOI: 10.9734/AJAEES/2021/v39i1130740

Baulechner, D., Diekotter, T., Wolters, V., & Jauker, F. 2019. Converting arable land into flowering fields changes functional and phylogenetic community structure in ground beetles. Biological Conservation, 231, 51-58. http:// dx.doi.org/10.1016/j.biocon.2019.01.005.

Bennewicz, J., & Barczak, T. 2020. Ground beetles (Carabidae) of field margin habitats. Biologia, 75 (10), 1631-1641. http://dx.doi.org/10.2478/s11756-020-00424-y.

Bennett, N.J., Roth, R., Klain, S.C., Chan, K., Christie, P., Clark, D.A., Cullman, G., Curran, D., Durbin, T.J., Epstein, G., Greenberg, A., Nelson, M.P., Sandlos, J., Stedman, R., Teel, T.L., Thomas, R., Veríssimo, D., & Wyborn, C. 2017. Conservation social science: understanding and integrating human dimensions to improve conservation. Biological Conservation. 205, 93–108. https://doi.org/10.1016/j.biocon.2016.10.006

Caballero-Serrano, V., Alday, J.G., Amigo, J., Caballero, D., Carrasco, J.C., McLaren, B., & Onaindia, M. 2017. Social perceptions of biodiversity and ecosystem services in the Ecuadorian amazon. Human Ecology, 45, 475–486. https://doi.org/10.1007/s10745-017-9921-6

Che, L.H., Zhang, P., Deng, S.H., Escalona, H.E., Wang, X., Li, Y., Pang, H., Vandenberg, N., Ślipiński, A., Tomaszewska, W., & Liang, D. 2021. New insights into the phylogeny and evolution of lady beetles (Coleoptera: Coccinellidae) by extensive sampling of genes and species. Molecular, Phylogenetics and Evolution, 156, 107045. DOI: 10.1016/j.ympev.2020.107045

Cividanes, F.J., 2021. Carabid beetles (Coleoptera: Carabidae) and biological control of agricultural pests in Latin America. Annals of the Entomological Society of America, 114 (2), 175- 191. http://dx.doi.org/10.1093/aesa/saaa051.

Csarzar, P., Torma, A., Galle-Szpisjak, N., Tolgyesi, C., & Galle, R. 2018. Efficiency of pitfall traps with funnels and/or roofs in capturing ground-dwelling arthropods. European Journal of Entomology, 115, 15-24. http://dx.doi.org/10.14411/ eje.2018.003.

Deroulers, P., Gauffre, B., Emeriau, S., Harismendy, A., & Bretagnolle, V. 2020. Towards a standardized experimental protocol to investigate interactions between weed seeds and ground beetles (Carabidae, Coleoptera). Arthropod-Plant Interactions, 14 (1), 127-138. http://dx.doi.org/10.1007/ s11829-019-09721-z.

Devine, N.G., Luttermoser, T. & Poveda, K. 2022. Body size, richness, and abundance of Staphylinidae unaffected by landscape composition and cropping system in a push–pull maize system in Kenya. CABI Agriculture and Bioscience, 3 (54). https://doi.org/10.1186/s43170-022-00119-1

García, D., Minarro, ~ M., Martínez-Sastre, R., 2018. Birds as suppliers of pest control in cider apple orchards: avian biodiversity drivers and insectivory effect. Agriculture, Ecosystem, and Environment, 254, 233–243. https://doi.org/10.1016/j.agee.2017.11.034

Gardarin, A., & Valantin-Morison, M. 2021. Which Pitfall Traps and Sampling Effort to Choose to Evaluate Cropping System Effects on Spider and Carabid Assemblages?. Environmental Entomology, 50 (1), 256-266. http://dx.doi.org/10.1093/ ee/nvaa145. PMid:33219662.

Gareau, T. P., Voortman, C., & Barbercheck, M. 2020. Carabid beetles (Coleoptera: Carabidae) differentially respond to soil management practices in feed and forage systems in transition to organic management. Renewable Agriculture and Food Systems, 35 (6), 608-625. http://dx.doi.org/10.1017/ S1742170519000255.

Gobbi, M., Barragan, Á., Brambilla, M., Moreno, E., Pruna, W., & Moret, P. 2018. Hand searching versus pitfall trapping: how to assess biodiversity of ground beetles (Coleoptera: Carabidae) in high altitude equatorial Andes?. Journal of Insect Conservation, 22 (3), 533-543. http://dx.doi. org/10.1007/s10841-018-0082-8.

Hassan, H. M., 2021. Role of the rove beetle, Paederus memnonius (Erichson) (Coleoptera: Staphylinidae) in controlling certain sugar beet pests for the first time in Egypt. Journal of Plant Protection and Pathology, 12 (2), 117-120. http:// dx.doi.org/10.21608/jppp.2021.154392.

Happe, A.-K., Alins, G., Blüthgen, N., Boreux, V., Bosch, J., García, D., Hamback, € P.A., Klein, A.-M., Martínez-Sastre, R., Minarro, ~ M., Müller, A.K., Porcel, M., Rodrigo, A., Roquer-Beni, L., Samnegård, U., Tasin, M., & Mody, K. 2019. Predatory arthropods in apple orchards across Europe: responses to agricultural management, adjacent habitat, landscape composition and country. Agriculture, Ecosystem, and Environment, 273, 141–150. https://doi.org/10.1016/j.agee.2018.12.012

Hertzog, L. R., Ebeling, A., Weisser, W. W., & Meyer, S. T. 2017. Plant diversity increases predation by ground-dwelling invertebrate predators. Ecosphere, 8, 11. doi: 10.1002/ecs2.1990

Hoffmann, H., Michalik, P., Görn, S., & Fischer, K. 2016. Effects of fen management and habitat parameters on staphylinid beetle (Coleoptera: Staphylinidae) assemblages in north-eastern Germany. Journal of Insect Conservation, 20, 129–139. doi: 10.1007/s10841-016-9847-0

Hong, E., Kim, Y., Jeong, J.-C., Kang, S.-H., Jung, J.-K., & Suk, S.-W. 2017. Community structure and distribution of ground beetles (Coleoptera: Carabidae) in Sobaeksan National Park, Korea. Journal of Ecology and Environment, 41 (1), 1-7. http://dx.doi.org/10.1186/s41610-017-0036-1.

Kosewska, A., Nijak, K., Nietupski, M., Kedzior, R., & Ludwiczak, E. 2020. Effect of plant protection on assemblages of ground beetles (Coleoptera, Carabidae) in sugar beet crops in four-year rotation. Acta Zoologica Academiae Scientiarum Hungaricae, 66, 49-68. http://dx.doi.org/10.17109/ AZH.66.Suppl.49.2020.

Kusnandar, K., van Kooten, O., & Brazier, F.M. 2019. Empowering through reflection: participatory design of change in agricultural chains in Indonesia by local stakeholders. Cogent Food and Agriculture, 5. https://doi.org/10.1080/23311932.2019.1608685

Lawrence, J. F., & Britton, F. B. 1994. Australian Beetles. Melbourne University Press: Victoria.

Lira, L.A., Barros-Cordiero, K.B., Figueiredo, B., Galvao, M.F., & Frizzas, M.R. 2020. The carrion beetle Oxelytrum discicolle (Coleoptera: Silphidae) and the estimative of the minimum post-mortem interval in a forensic case in Brasília, Brazil. Revista Brasileira de Entomologia, 64 (1), e201992. http://dx.doi. org/10.1590/1806-9665-rbent-2019-92.

Magurran, AE. 1996. Ecologycal Diversity and Its Measurement. London: Chapman and Hall.

Martinez-Sastre, R., Garcia, D., Minarro, M., & Martin-Lopez, B. 2020. Farmers’ perceptions and knowledge of natural enemies as providers of biological control in cidar apple orchards. Journal of Environmental Management, 266, 110589. https://doi.org/10.1016/j.jenvman.2020.110589.

Nain M, Sanjeev, N., & Aneja, D.R. 2019. Instability and Trend in area, production and productivity of rice crop in Haryana and India. Current Journal of Applied Science and Technology, 37 (5),1-9.

Ng, K., McIntyre, S., Macfadyen, S., Barton, P. S., Driscoll, D. A., & Lindenmayer, D. B. 2018. Dynamic effects of ground-layer plant communities on beetles in a fragmented farming landscape. Biodiversity and Conservation, 27, 2131–2153. doi: 10.1007/s10531-018-1526-x

Oliveira-Hoffman, C., Victor, V.S., Meinke, L.J., & Peterson, J.A. 2020. Molecular gut-content analysis of adult ground beetles (Coleoptera: Carabidae) provides no evidence of predation of western corn rootworm (Coleoptera: Chrysomelidae) in a Nebraska corn agroecosystem. Journal of Entomological Science, 55 (4), 448-461. http://dx.doi.org/10.18474/0749- 8004-55.4.448.

Perez‐Alvarez R, Grab H, Polyakov A, & Poveda K. 2021.Landscape composition mediates the relationship between predator body size and pest control. Ecological Applications, 31(6), e02365. https://doi.org/10.1002/eap.2365.

Pizzolotto, R., Mazzei, A., Bonacci, T., Scalercio, S., Iannotta, N., & Brandmayr, P. 2018. Ground beetles in Mediterranean olive agroecosystems: their significance and functional role as bioindicators (Coleoptera, Carabidae). PLoS One, 13 (3), e0194551. http://dx.doi.org/10.1371/journal.pone.0194551. PMid:29558493.

Sharma, L., Gonçalves, F., Oliveira, I., Torres, L., & Marques, G. 2018. Insect-associated fungi from naturally mycosed vine mealybug Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae). Biocontrol Science and Technology, 28, 122–141. https://doi.org/10.1080/09583157.2018.1428733

Sumah, A.S.W. 2023. Functional response of predator Paederus sp. (Coleoptera: Staphylinidae). Indonesian Journal of Applied Research (IJAR), 4(1): 53-62. https://doi.org/10.30997/ijar.v4i1.257

Taranto, L., Rodrigues, I., Santos, S.A.P., Villa, M., & Pereira, J.A. 2022. Response of the Coccinellidae Community within Sustainable Vineyards to the Surrounding Landscape. Agronomy 12, 2140. https://doi.org/10.3390/agronomy12092140

Triplehorn, C. A., & Johnson N. F. 2005. Borror and Delong’s Introduction to The Study of Insect 7th Edition. Thomson Brooks/Cole: Belmont.

Twardowski, J. P., Gruss, I., & Hurej, M. 2020. Does vegetation complexity within intensive agricultural landscape affect rove beetle (Coleoptera: Staphylinidae) assemblages?. Biocontrol Science and Technology, 30:2, 116-131, DOI: 10.1080/09583157.2019.1695101




DOI: http://dx.doi.org/10.31258/ijae.14.2.56-63

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Ali Alamsyah Kusumadinata

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Creative Commons Licence

Hak cipta artikel-artikel pada jurnal ini dimiliki oleh penulis, dan penulis bersedia memberikan hak penerbitan pertama kepada jurnal. Pemilikan hak cipta dilisensikan dibawah Creative Commons Attribution 4.0 International License. Lisensi ini memungkinkan penggunaan, pendistribusian, dan pencetakan kembali tanpa batas pada media apa pun, asalkan penulis dan sumber sebenarnya disebutkan.